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Application of the Korringa-Kohn-Rostoker cluster 
coherent-potential approximation to an s phase shift 
semicircular model 

S S Rajput, S S A Razee, R Prasad and A Mookerjeet 
Department of Physics, Indian Institute of Technology, Kanpur - 208016, India 

Received 24 April 1989 

Abstract. An s phase shift semicircular model of a random substitutional binary alloy has 
been used as a test case for studying the self-consistent Korringa-Kohn-Rostoker cluster 
coherent-potential approximation (KKR-CCPA). In addition to being computationally 
simpler, the model has the advantage that a corresponding model exists in the well known 
tight-binding framework. A one-to-one correspondence has been shown between the KKR- 
CCPA equations and the tight-binding CCPA equations. In the tight-binding framework, it has 
been shown that certain quantities, which were hitherto calculated approximately, can be 
obtained exactly by the partitioning technique. Our results for density of states in the CCPA 
show rich structure in the impurity band, which arises due to correlated scattering from 
clusters of atoms. 

1. Introduction 

During the last decade, the coherent-potential approximation (CPA) has emerged as the 
most successful single-site approximation for calculating the electronic structure of 
random substitutional binary alloys, in both the empirical tight-binding (TB) and first- 
principles Korringa-Kohn-Rostoker (KKR) frameworks. Despite its success, the CPA, 
being a single-site approximation, does not include correlated scattering from neigh- 
bouring sites. This could play an important role in systems having short-range order and 
clustering tendencies (Wright et a1 1987, Stefanou et a1 1987, Banhart et a1 1988). To 
study the effect of correlated scattering, some workers (Gonis et a1 1984) proposed the 
idea of an embedded cluster method. In this method, a cluster consisting of a central site 
and its shell of nearest neighbours was embedded in an effective medium determined 
within the KKR-CPA. However, this method is not fully self-consistent. The idea of self- 
consistent cluster CPA (CCPA) was proposed by some workers within the framework of 
some new approaches, like travelling-cluster approximation (Mills and Ratanavararaksa 
1978) and augmented-space formalism (ASF) (Mookerjee 1973, Gray and Kaplan 1976a, 
b), which preserve the herglotz properties of the Green function. The ASF has been 
successfully applied to the calculation of electronic properties of binary alloys by several 
workers in the tight-binding framework (Kumar et a1 1982, Thakur et a1 1987). 

Recently it has been shown that one can use the ASF to go beyond the single-site 
approximation within the conventional KKR method (Mookerjee 1987, Razee eta1 1990), 
preserving the herglotz properties of the Green function. Because of its complexity, 
i Present address: S N Bose National Centre for Basic Sciences, DB-17, Sector I, Salt Lake City, Calcutta 
700064, India. 
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implementation of the KKR-CCPA to realistic systems is difficult and involves lengthy 
computation. To our knowledge no successful implementation has been carried out on 
any realistic system to date. In this paper, as a test case, we have applied the KKR-CCPA 
to an s phase shift semicircular model. The model has several advantages. (i) Because 
of the semicircular modelling, the involved k-space integration, required to obtain the 
site-diagonal path operator, is bypassed. This reduces the computational effort and 
allows us to concentrate more on the effect of correlated scattering, which is the principal 
aim of this work. (ii) The KKR-CPA based on this model has been tried out before (Soven 
1970). This allows us to compare the earlier work, based on conventional methods, with 
our augmented-space generalisation. However, the ad hoc assumption of a semicircular 
density of states for the structure factor allows us only to obtain the site-diagonal path 
operator. It does not tell us how to obtain the off-diagonal elements, which are also 
necessary in the CCPA. In order to circumvent this difficulty, we have first shown an exact 
analogy in the mathematical structure in the CCPA equations of the KKR method in this 
model and the tight-binding equations. The path operator in the KKR method has its 
counterpart in the Green function in the tight-binding framework. We have also shown, 
through the analogy, that the semicircular model is essentially a Bethe lattice approxi- 
mation. This allows us to model the off-diagonal elements of the path operator. It also 
gives us a clear insight into the approximations involved in the model. 

In section 2.1, we start with a brief discussion of the augmented-space formulation. 
This is first applied to a tight-binding Hamiltonian and CCPA equations are derived. This 
then forms the basis for extension of this method to the KKR framework. In the tight- 
binding framework, we have refined the technique such that various quantities appearing 
in the CCPA equations are calculated exactly. Till now these quantities were calculated 
approximately by summing over an infinite series (Kumar et a1 1982, Thakur et a1 1987). 

One of the features of the CPA is that in the low-concentration limit it gives the 
features of a single impurity (Ehrenreich and Schwartz 1976). In the same spirit, we 
want to examine whether the CCPA density of states (DOS) in the low-concentration limit 
reduces to the two-impurity local density of states (LDOS). The formulation of the two- 
impurity problem is given in section 2.2. In some earlier work on the CCPA (Thakur et a1 
1987, Kumar et a1 1982) as well as in the present work, we note rich structure in the CCPA 
DOS. We also wish to understand the structure in the CCPA DOS in the light of the two- 
impurity LDOS. 

The formulation of the KKR-CCPA is presented in section 2.3. In section 3.1, we apply 
the KKR-CCPA formulation to the s phase shift semicircular model. The Bethe lattice 
model is examined in section 3.2. The KKR-CCPA equations for the s phase shift model 
and the tight-binding CCPA equations for the semicircular model are compared and a 
one-to-one correspondence between them is established in section 3.3. Finally we 
present our results in section 4 and our conclusions in section 5. 

2. Formulation 

2.1. Tight-binding cluster coherent-potential approximation (TB-CCPA) 

We consider the following tight-binding Hamiltonian with no off-diagonal disorder: 

= 2 El91 + EE vt131! (2. la)  

where E, is the energy corresponding to site i ,  and V ,  is the hopping integral. 9’L (=li)(ii) 
1 121 
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and Tij (=li)ol) are respectively projection and transfer operators in the Hilbert space 
X spanned by the site-labelled basis {li)}. The elements of the Green function for this 
system are 

(2. lb )  

For a random binary alloy AXBY, the random site energy Ei can be written in terms 

G, = (i((EZ - H)-’Ij). 

of a random ‘occupation’ parameter ni as 

Ei = EAni + EB(l - ni) (2. IC) 

where 

1 i f i = A  

i f i = B  
ni = {o 

with a probability distribution 

P(nf> = 

d n f )  = wJ-4 Im(fPl(n1l - MXlI fP)  

- 1) + yS(n1) 

We may expressp(n,) as 

where M ,  is an operator in the configuration space 8, of rank 2 spanned by If:) and 
1 f:) with a representation 

M ,  = ~9fp + ~9,; + ( X Y )  ‘1’ (Tfofo , I  + Tfyp). 

tt’[{n,>l) = (VI pc{M,HIQl,> (2.3) 

(2 * 2) 

The augmented-space theorem (Mookerjee 1973) then implies that the configuration 
average of a function is 

where (q) = II, If;) is a member of the basis (qP) = II, Ifs[) ( s f  = 0 , l  andp  = 1 , 2 ,  . . . , 
2N) belonging to the configuration space Q, = IT, 8, of rank 2N. The function f [{M,}] is an 
operator in the augmented space 

The elements of the configuration-averaged Green function, by the augmented- 
space theorem, are 

(2.4a) 

= X €3 Q, of rank N x 2N. 

( G , ( E ) )  = (i, QlI(E1 - f w Q l , j ) .  

The augmented-space Hamiltonian is given by 

8 =  EBB91 + ~ E ~ . , @ M M ,  + zx v,,Tq €391 (2.4b) 

where 6E = E A  - E B  and 91 is the identity operator in the configuration space. Note that 
(2.4a) is exact, but cannot be evaluated because of the large dimensionality of the 
augmented space. Therefore, we look for some approximation that will reduce the size 
of the augmented space. For this purpose, we partition the augmented space into a 
subspace I spanned by I%, c p p )  and remaining subspace denoted by 11. We shall take, as 
an example, the cluster % consisting of sites 0 and 1. 

ThesubspaceIisspannedbyeight basisvectorsl0, q), 10, q0), 10, q1), IO, cpol), 11, q), 

I +I 

IL %>, 11, Qll) and 11, %I), where Ql = Ifo0f9, cpl = If:f:), Q l o  = I f A f P )  and Q l O l  = 
IfAf:)  (Mookerjee 1973). 
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Now we partition fi as 

where 

HI = EPO €3 ( 9 p  + Tp]) + 9 1  €3 ( 9 p 0  + 9 p ) l  

+ @h €3 ( 9 p 1  + p p O J  + 9 0  €3 (9p01  + 9p0)1 

+ (VOl'Ol + VlOTlO) €3 ( 9 p  + 9 p 0 1  + 9 p 0  + %pJ 

+ W P O  €3 ('plp"l + 'polpi + 'pop + 'ppo)] 

+ W[g1 €3 ('PPI+ 'PIP: + 'p0lp)o + 'popol)I. ( 2 . 5 ~ )  

We now replace the Hamiltonians HII and H' by translationally symmetric effective 
Hamiltonians H$f and HIeff. Their diagonal and off-diagonal elements are a. and ai, 
respectively. Thus 

(2.5b) 

E = X E ,  + yEB E = xEB + w = (Xy ) '"(EA - EB). 

By the partition theorem, (G,) may be written as the representation of the resolvent of 
an operator in the subspace I where 

A = H~ + H'(E$ - H,,)-'H'~. 

With the help of equations (2 .5 ) ,  we get 

fi = HI + [Eoo(po + 91) + (EOlTOl + E10'10)I €3 ( 9 p  + 9," + 9 p 1  + p p O J  

where 

goo = xx aojG$f(o,l)aM, 
j . k f 0 . l  

glo = 22 aljG,ekff(o,l)akO. 
j,k#O.l  

Since we need only the (i, Q,I . . . (9, j )  element of (E9  - fi)-', we again partition fi 
as 

where 

vol + VlO + E l 0  E + Eo0 

H1 = ( E + E o o  
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1. 0 o o o o w  
w o o o o o  H12 = ( (2.7a) 

The matrix H 2  is of rank 6 and can be obtained from equations (2.6). By the partition 
theorem 

(i ,  ql(E9 - fi)-'Iq,j) = (i l[E9 - H1 - H12(E9 - HZ)-lHZ1]-llj). (2.7b) 

Here 

where 

Q, = [(E9 - H2)-l]i , .  

We define a translationally symmetric effective Hamiltonian Heff such that its resolv- 
ent is the average Green function (G,): 

Here uo and ai, are diagonal and off-diagonal elements of Heff. By comparing (2.7b) and 
(2.8), we get 

00 = E f wQ66w 

001  = VOl + we61 (2.9) 

0 1 0  = VlO + wQ16w. 

Here 

e 6 6  = Rb' 
= R;"Vl0R;' WR;'l folRyl WR;'TlORil  (2.10) 

1 2 6 1  = R,'To1Rf1wRy1lfl&' WR;'TolRcl. 

with 

To1 = VOl + 501 
VlO = VlO + 510 

(2.11) 

We have calculated Em, gol and El0 analytically by using the partition theorem on 
Heff. The Geff is given as 
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By partitioning this in 2 X 2 cluster subspace, we get 

(2.12) 

Equation (2.12) then gives 

Note that goo, Eol and El0 as given by (2.13) are exact. Earlier workers (Kumar et a1 
1982, Thakur et a1 1987) calculated these quantities approximately from (2.6) by a 
recursion method. 

2.2. The two-impurity problem 

The study of the two-impurity problem is important while examining the structures 
in CCPA DOS. Let us embed two impurities A and B at the sites labelled as 0 and 1 in the 
CPA effective medium. Then the Hamiltonian is 

By simple partitioning of the space into a space spanned by 0 and 1 and the rest, we 
get 

where Gfi is the Green function for the effective medium, and 

(U = (01 - V)Ggf 

The local density of states (LDOS) pi on the ith site is then obtained as 

pi  = -(1/n) Im(Gff) i = 0 or 1. 

(2.1%) 
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2.3. Korringa-Kohn-Rostoker cluster coherent-potential approximation (KKR-CCPA) 

In the KKR framework the alloy is modelled by a random array of muffin-tin potentials 
of A or B type. The on-shell matrix elements of single muffin-tin t-matrices are (Ehren- 
reich and Schwartz 1976, Gyorffy and Stocks 1979, Bansill987) 

t ; \ (B) (~ )  = - ( I / K )  e'"sin 6 /  (2.16) 

where K = ( \El )1 /2  and 6) are phase shifts. The path operator matrices are given by 

(2.17) 

where C = t-' and B ( K )  is the matrix of real-space structure function B i j ( ~ )  (Ehrenreich 
and Schwartz 1976). We note that B(K)  depends only on the lattice structure and does 
not contain any disorder while C(K) has a binary distribution. For a random binary alloy 
the random variable C can be written in terms of the random parameter nj as 

Cj  = CAni + c B ( 1  - n i )  

where ni is given by equation (2 .1~) .  Also we define an operator D as 

and 

A comparison of (2.17) and (2. lb)  shows that Til is structurally similar to G, and 
hence the augmented-space formulation developed in section 2.1 for the tight-binding 
equations can be applied straightforwardly to derive the KKR-CCPA equations (Mook- 
erjee 1987). The relationship between tight-binding and KKR formulations becomes 
clear if we note the following correspondences: 

(2.18) 

The procedure for generating the CPA and CCPA by partitioning of the augmented 
space is identical to that described in section 2.1. By using (2.18), we get the KKR-CCPA 
equations as 

(2.19) 

Here 
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with 

and 

where 

Also 

(2.20) 

(2.21) 

= c - [T$f - Tg;f(T$f)-'Teff 
10 I - '  

Ehl = -aol + [Tgf - Tg~f(T~f)- 'T~~f]-lTg~f(T$f)- '  

E i O  = - 3 1 0  + (Too) 1 0 1 - ' .  

(2.22) 
e f f  -1lXt[T$f - T$f(T$f)- 'Tef f  

Now the average electronic density of states for the alloy can be calculated by the 
formula (Ehrenreich and Schwartz 1976) 

(2.23) 
-1 
NJC 

6 p ( E )  = pef f (E)  - p o ( E )  = - Im Tr 

where po(E) is the free-electron DOS, pef f (E)  is the DOS for the effective medium, N is 
the total number of unit cells in the solid and B, is the Fourier transform of B;,. The 
configuration averages in equation (2.23) can be calculated using the augmented-space 
formalism as shown in section 3.1. 

3. Application of the cluster coherent-potential approximation 

3.1. The s phase shift semicircular model 

We shall illustrate our KKR-CCPA formalism by applying it to a simple model. This will 
also bring us in contact with the single-site muffin-tin KKR-CPA work of Soven (1970). As 
in that work, we shall assume that only the s phase shift dominates, so that B ,  t and T 
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become scalars in angular-momentum space. For this model, like Soven (1970), we shall 
assume that the phase shift has resonance behaviour and that the cotangent of phase 
shift is given by 

where EA(B) is the resonant energy and r A ( B )  is the resonance half-width. 

(Soven 1970) 
In order to simplify the problem further, we assume that the structure function 

has no explicit dependence on energy. Here B&K) is the Fourier transform of B,. From 
(2.16) we get 

C(K) = ~ - I ( K )  = -Kcot do  + i = -KC + i (3.3) 

where c is given by equation (3.1). 
The path operator 

T ,  =-xeexp(-iq.R,)- 1 1 
c - B, N ,  

T , = - - - ( c + B , ) -  1 - - - '1 ( C  + b)-lfo(b) d b  
K K N  4 

wherefo(b) is a distribution function given by 

We choosefO(b) (Soven 1970) as 

Then 

Too = -(1/KkOo 

where 

gm = 2[c + (c2 - 1)1'2]. 

Similarly, 

(3.4) 

(3.7) 
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To1 = Tlo = - - f ' ( b ) ( c  + 6)-' db  
K 'I 

where distribution function f'(b) is defined as 

1 
f ' ( b )  = exp(-iq.Rol) d ( b  - B9). 

9 

( 3 . 8 ~ )  

(3.8b) 

We choosef'(b) such that 

where A is a constant. The validity of this choice will be discussed in section 3.3. Hence 

1 
TOl = Tlo = - '1" ($1 (1 - b 2 ) 1 / 2 ( ~  + b)- 'b d b  = - -gol 

K 
-1 

where 

go1 = ( ~ / 8 ) ( g d 2  

From equation (3.8b) we get 

Bol = J f ' ( b ) b  d b  = -A/8. 

Taking the Fourier transform of (3.2) we get 

Bol = Blo = K B o l  -KA/8. 

From equation (2.20) we get 

3 0 1  = a 1 0  = Bo1 + bo1 
where 

bo, = b1o = K b .  

The Fourier transform of (3.11) gives us 

93, = B, + b, 

and 

b , ( ~ )  = 2 boj exp(iq - Rol) = 601 exp(iq - R o l ) .  
I + O  

The diagonal elements of the path operator within the CCPA are given as 

(3. loa) 

(3.106) 

(3.11) 

Expanding in a Taylor series near pol = 0 and retaining only the first-order term we get 
Teff - - 

00 - (1/K)gE 

where 
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(3.12) 

The off-diagonal elements of the path operator are given by 

which reduces to 
T"i = Teff - - 

01 10 - ( l / m \ f  

where 

g g  = go, + 2P,,[1 + c/(c2 - 1)"*]. (3.13) 

Note that the form of the function gEif retains its herglotz properties even after this 

Finally the change in DOS per atom is given by equation (2.23), which is 
additional approximation. 

where 

U = d C / d E  Ceff = -KC + i. 
We get the formula for the change in DOS as 

(3.14) 

(3.15) 

where C = xcA + yeB and c is the cotangent of the phase shift for the effective medium. 

3.2. The Bethe lattice model 

Bethe lattices have no closed loops and are completely characterised by their number 
of nearest neighbours 2 or connectivity K = 2 - 1. For the tight-binding Hamiltonian 
on the Bethe lattice the Green functions for a perfect system can be calculated exactly 
by a renormalised perturbation expansion (Economou 1979) and are given by 

2K 
Goo = ( K  - 1)(E - Eo) + ( K  + 1)[(E - - 4KV2I1l2 

(3.16) 
2v 

= G l o  = ( (E - E,) + [ ( E  - E0)2 - 4KVZ]'/z 

where Eo and V are the diagonal and off-diagonal elements of the nearest-neighbour 
Hamiltonian. We take V = 0.5/K1i2, which gives unit half band-width. For an alloy A,B, 
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we take the site energies Eo as EA = S/2 and E, = -6/2, where 6 is a band separation 
parameter. For the CPA medium, (3.16) reduces to 

- 2K 
( K  - 1)(E - 0 0 )  + (K + 1)[(E - 00)’ - 4KV2I1/* Goo = 

(3.17) 
2 v  

= ‘lo = Goo ((E - ao) + [(E - ao)Z - 4KV*]1/2 

where uo is the diagonal element of the effective Hamiltonian within the CPA. For K % 1 
equations (3.17) reduce to the Green function of the semicircular model (Velicky et a1 
1968) as 

Goo = 2{(E - 00) - [(E - 00)’ - 1]”*} 

Gol = Glo = (0.5/K1/’)(Goo)*. 
(3.18) 

The Green functions within the CCPA can be obtained from (3.17) by replacing V by 
u1 where o1 is the off-diagonal element of the effective Hamiltonian. 

3.3. Comparison of KKR-CCPA and TB-CCPA equations 

In this section, we compare the KKR-CCPA equations for the s phase shift semicircular 
model of unit resonance half-width with the TB-CCPA equations for the semicircular 
model of unit half band-width. Therefore, we have calculated the values of Green 
functions for tight-binding semicircular model with the help of distribution functions. 
The Green function within the CPA is given by (Ehrenreich and Schwartz 1976) 

(3.19) 

where 

With the help of distribution functionsfo(b) andf’(b) as defined in (3.6) and (3.9), 
we get 

Goo = - / f o ( b ) ( c ’  + b)-’ d b  = -2[c’ + (c” - 1)112] 

Go1 = Glo = 

(3.20) 

f ’ (b) (c ’  + b)-’ d b  = -(/2/8)(G,)* (3.21) I 
where 

c’ = uo - E.  

These equations for Goo and Col are analogous to equations (3.18), which are exact 
and are derived by taking the large-K limit of the Bethe lattice model. Since Til in 
equation (3.4) and G, in equation (3.19) are structurally similar, we expect Too and To, 
in equations (3.7) and (3.10a) respectively to have the form of equations (3.20) and 
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(3.21). This is exactly what we get by using the distribution functionsfo(b) and f ' ( b ) .  
Therefore, we are justified in using these distribution functions. We also get 

VOl = Vlo = f ' ( b ) b  d b  = -A/% (3.22) i 
The Green function for the effective medium is given by 

1 exp(-iq.Rv) Geff = - 2 
N ,  E - U O - S ,  (3.23a) 

where 
0 . .  = 0.. - v.. s, = s, + s, s, = vol exp(iq . R v )  11 11 11' (3.23b) 

By using the distribution functionsfO(b) andf'(b), we have calculated the diagonal and 
off-diagonal elements of Geff as 

Now for convenience, we define a new set of KKR variables as follows: 

(3.24) 

By using these variables, the KKR-CCPA equations are compared with TB-CCPA 
equations in table 1. It is clear that there is a one-to-one correspondence between them. 

4. Results and discussion 

For convenience, we shall first present the calculations using the tight-binding method 
for the Bethe lattice model with K = 2. Figure 1 shows the CPA and CCPA DOS for 6 = 1 
in the low-concentration regime. We note that there is not much difference in the 
majority band between the CPA and CCPA, in contrast to considerable difference in the 
impurity band. Two sub-bands appear in the CCPA as compared to one in the CPA. These 
two sub-bands arise because of correlated scattering from the clusters of two impurities 
embedded in the effective medium. In the low-concentration limit ( x  6 l), the impurity 
pair in the alloy is most likely to be of AA type. The energy levels for the AA impurity 
pair embedded in pure B are at energies 0.53 and 1.04, as shown by the full arrows in 
figure 1. These two levels are close to the shoulder in the CCPADOS at about E = 0.6 and 
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- 
: 0 2 -  

0. 

Table 1. Comparison between KKR-CCPA and TB-CCPA equations. 

, 
I 
1 Figure 1. The averaged density of states using the 

CPA (broken curve) and the CCPA (full curve) for 
the parameters K = 2, 6 = 1 and x = 0.05. 
Broken and full arrows indicate the positions of 

- 

I I I I I the single-impurity and two-impurities levels in a 

KKR-CCPA equations TB-CCPA equations 

PAl = -A18 
w = ( X Y ) ' / ~ ( E ,  - EB) 

VoI = -118 
W = (xy)li2(EA - E,) 

F = x E A + y E B -  E 
E = YEA + xEB - E 

E = X E ,  + y~~ 
E = Y E ,  + X E ~  

g$,f = 2[c + (c2 - 1)1'2] G$f = -2[c' + (c'2 - 1)1/2] 

(c'2 - 1)1/2 
2c'2 - i 2c2 - 1) 

gay = (A/2)[2c2 - 1 + 2c(c2 - 1 ) ' q  Gef! 01 - - - (A/2)[2c'2 - 1 + 2c'(c'2 - 1)iQ] 

the peak at E = 1.0 respectively. The peak at about E = 0.8 in the CCPA DOS arises due 
to the single A impurity level, which is at E = 0.83 and about which the CPA impurity 
band is centred. Thus, the structures in the CCPA minority-band DOS are accounted for 
by the examination of impurity levels. 

Figure 2(a) shows the CPA and CCPADOS for 6 = 1 for a concentrated alloy ( x  = 0.5). 
We note that although the CPA DOS is smooth, the CCPA DOS has two peaks. We explain 
this on the basis of clusters of two atoms embedded in the effective medium. Unlike the 
low-concentration limit, the probabilities of AA, AB, BA and BB pairs are identical. 

t 1 
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Figure 2. (a )  The averaged density of states using 
the CPA (broken curve) and the CCPA (full curve) 
for  parameters K = 2, 6 = 1 and x = 0.5. ( b )  
Local density of states for two-impurities pairs 
embedded in the CPA medium for the same par- 
ameters. Full curves correspond to B A  and A B  
pairs while broken curves correspond to BB and 

-1 6 - 0  8 0 0.8 ' 
Energy (un i ts  o f  ho l f  band-wldthi A A  pairs. 

Figure 3. The averaged density of states 
using the CPA (broken curve) and the CCPA 

-1.6 -0.e 0 0.8 1.6 (full  curve) for parameters K = 2 . 6  = 1.7 
Energy (un i ts  o f  half bond-width1 andx = 0.5. 

The peaks in CCPA around E = - 1.0 and 1.0 appear approximately at energies close to 
the LDOS peaks corresponding to BA and AB pairs embedded in the CPA medium as 
shown in figure 2(b) .  The LDOS peaks corresponding to AA and BB pairs appear near 
the edges of the CCPADOS. This indicates that the extra peaks arising in the CCPA DOS are 
due to the correlated scattering from the impurity clusters in the effective medium. 

Figure 3 shows the DOS for 6 = 1.7 and x = 0.5. We note that the critical value of 6 
for band separation in the CCPA is 1.7 while in the CPA it is 1.3. This implies that in the 
CCPA the bands are less likely to be separated. 

The results for the Bethe lattice model with K = 10 are shown in figures 4 , 5  and 6. 
In figure 4 we show the CPA and CCPA DOS for 6 = 1 in the dilute limit ( x  = 0.05). There 
is no difference in the CPA and CCPA DOS in the majority band. The CCPA minority-band 
DOS has two peaks at about E = 0.6 and 0.85, in contrast to a very smooth CPA minority 
band, The two peaks in the CCPADOS are well accounted for by the energy levels of AA 
impurity pairs, which are at E = 0.64 and 0.87 respectively. 

Figure 5(a)  shows the DOS curves for 6 = 1 in the concentrated limit (x = 0.5). We 
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Energy (units of holf bond-width1 

Figure 4. The averaged density of states using the 
CPA (broken curve) and the CCPA (full curve) for 
parameters K = 10, 6 = 1 and x = 0.05. The 
broken and full arrows indicate the positions of 
the single-impurity and two-impurities levels in a 
pure B medium. 

0 . 4  

O . 1  0 -1.6 

Energy (units o f  half  band-width) 

Figure 5. (a)  The averaged density of states using 
the CPA (broken curve) and the CCPA (full curve) 
for parameters K = 10, 6 = 1 and x = 0.5. ( b )  
Local density of states for two-impurities pairs 
embedded in the CPA medium for the same par- 
ameters. Full curves correspond to BA and AB 
pairs while broken curves correspond to BB and 
AA pairs. 

note that both the CPA as well as the CCPA DOS are smooth. This arises for the following 
reasons: (i) the LDOS for the impurity pairs, as shown in figure 5(b),  are smooth as 
compared to K = 2; (ii) the LDOS peaks for (BA, AB) and (AB, AA) pairs are at about 
the same energies. 

Figure 6 shows the DOS for 6 = 1.4 and x = 0.5. This again shows that the critical 
value of S in the CCPA is greater than that in the CPA. It is 1.4 in the CCPA whereas it is 
1.2 in the CPA. 

A contrast between K = 2 and K = 10 cases is worth noting. In the dilute limit, the 
minority band for K = 2 (figure 1) breaks up into two sub-bands while for K = 10 (figure 
4) we have only one impurity band with some structure. The separation between the 
two impurity levels for the K = 2 case is much larger than that for K = 10. The difference 
is due to the different values of hopping parameter V = 0.5/K1'* in the two cases. For 
the K = 10 case it is much smaller compared to that for K = 2. Thus in the concentrated 
limit, there is an appreciable difference in the CPA and CCPA DOS for K = 2 compared to 
K = 10. The difference between the CPA and CCPA DOS decreases as K increases and 
eventually reduces to zero when K is very large (-100). Note that, in this limit, our 
model reduces to the semicircular model (Velicky et a1 1968) as shown in section 3.2. 

Now we present the KKR-CCPA results for the s phase shift semicircular model. We 
have calculated the change in density of states (SDOS) with respect to the free-electron 
gas within the CPA and CCPA. We have found that, for the small A ,  there is negligible 
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Figure 6.  The averaged density of states 
using the CPA (broken curve) and the CCPA 
(full curve) for parameters K = 10, 6 = 
1.4 andx = 0.5. 
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= 0 4  Figure 7. (a )  The change in averaged density of f - states per atom using the KKR-CPA (broken curve) 
and the KKR-CCPA (full curve) for the parameters 

10 E A =  - E B = 0 . 5 , T A =  l , rB= l , A = 2 , 5 a n d x =  
0.5. The energy is in arbitrary units. ( b )  Same as 
in (a )  but with parameters = - E ~  = 0.5, r A  = 
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Energy (arbi t rary units) l , r B = 2 , A = 2 . 5 a n d x = 0 . 8 .  

difference in   DOS between the CPA and CCPA, as was mentioned above for the Bethe 
lattice model with large K. This is because for large K (or small A ) ,  CCPA equations for 
both models have one-to-one correspondence. But for large A there is avisible difference 
between 6 ~ 0 s  in the CPA and CCPA as can be seen in figures 7(a) and (b) .  Figure 7(a) 

l), while figure 7(b )  is for different half-widths ( r A  = 1, TB = 2). Note that these results, 
in general, are also valid for the tight-binding semicircular model, as is evident from 
table 1. 

As in the tight-binding case, to understand the structure in the KKR-CCPA DOS, we 
have to solve the two-impurities problem. This requires knowledge of the impurity 
wavefunctions (Faulkner and Stocks 1980), which are not available for the s phase shift 
model. However, since we have already shown a one-to-one correspondence between 
the KKR-CCPA and the TB-CCPA equations, we expect that the main features of the TB 
model will be reflected in the KKR model, and hence the structure in figure 7 can be 
related to the correlated scattering from clusters of atoms. 

shows the KKR-CPA and KKR-CCPA 6DOS for the same resonance half-widths ( r A  = rB = 
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5. Conclusions 

We have applied the KKR-CCPA formulation to the s phase shift semicircular model, 
which has an analogue in the tight-binding framework. A one-to-one correspondence 
has been established between the KKR-CCPA equations for this model and the TB-CCPA 
equations for the analogous semicircular model. In the course of this analysis, we were 
also able to refine the TB-CCPA method such that various quantities, which have so far 
been calculated approximately, are calculated exactly. This TB-CCPA formulation was 
then applied to the Bethe lattice model. We found that the difference in the CPA and 
CCPA DOS is appreciable only when the number of nearest neighbours 2 is small and 
decreases as Z increases. Also, in the CPA the minority band is smooth whereas in the 
CCPA it gains structure. The structure in the CCPA DOS is seen at energies close to the 
impurity levels. This clearly indicates that the structure appears due to the correlated 
scattering from the clusters embedded in an effective medium. For a large value of 2, 
there is little difference in the CPA and CCPA DOS for this model and the s phase shift 
semicircular model. This is expected because of their equivalence in this limit. 
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